Multigrid Algorithms for Inverse Problems with Linear Parabolic PDE Constraints

نویسندگان

  • Santi S. Adavani
  • George Biros
چکیده

We present a multigrid algorithm for the solution of distributed parameter inverse problems constrained by variable-coefficient linear parabolic partial differential equations. We consider problems in which the inversion variable is a function of space only; for stability we use an L2 Tikhonov regularization. The main feature of our algorithm is that its convergence rate is mesh-independent—even in the case of no regularization. This feature makes the method algorithmically robust to the value of the regularization parameter, and thus, useful for the cases in which we seek a high-fidelity reconstruction. The problem is formulated as a PDE-constrained optimization. We use a reduced space approach. We eliminate the state and adjoint variables and we iterate in the inversion parameter space using Conjugate Gradients. We precondition with a V-cycle multigrid scheme. The multigrid smoother is a two-step stationary iterative solver that inexactly inverts an approximate Hessian by iterating exclusively in the high-frequency subspace (using a highpass filter). We analyze the performance of the scheme for the constant coefficient case with full observations; we analytically calculate the spectrum of the reduced Hessian and the smoothing factor for the multigrid scheme. The forward and adjoint problems are discretized using a backward-Euler finite-difference scheme. The overall complexity of our inversion algorithm isO(NtN +N log N), whereN is number of grid points in space andNt is the number of time steps. We provide numerical experiments that demonstrate the effectiveness of the method for different diffusion coefficients and values of the regularization parameter. We also provide heuristics, and conduct numerical experiments for the case with variable coefficients, and partial observations. We observe the same complexity as in the constant-coefficient case. Finally, to avoid exact forward and adjoint solves far from the minimum, we combine the reduced-space algorithm with a full-space method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multigrid Methods for PDE Optimization

Research on multigrid methods for optimization problems is reviewed. Optimization problems include shape design, parameter optimization, and optimal control problems governed by partial differential equations of elliptic, parabolic, and hyperbolic type.

متن کامل

Multigrid second-order accurate solution of parabolic control-constrained problems

A mesh-independent and second-order accurate multigrid strategy to solve control-constrained parabolic optimal control problems is presented. The resulting algorithms appear to be robust with respect to change of values of the control parameters and have the ability to accommodate constraints on the control also in the limit case of bang-bang control. Central to the development of these multigr...

متن کامل

Sparse Reconstructions for Inverse PDE Problems

We are concerned with the numerical solution of linear parameter identification problems for parabolic PDE, written as an operator equation Ku = f . The target object u is assumed to have a sparse expansion with respect to a wavelet system Ψ = {ψλ} in space-time. For the recovery of the unknown coefficient array, we use Tikhonov regularization with `p coefficient penalties and the associated it...

متن کامل

4 A Multigrid Method for the Solution of Linear-Quadratic Optimal Control Problems

The main part of this chapter is devoted to the development and presentation of a coupled multigrid method for the solution of saddle point systems (2.51) arising from the discretization of PDE constrained optimization problems. In subsequent chapters, the devised method will be adapted to handle inequality constraints on the control, and it will be employed for the solution of the systems, whi...

متن کامل

Implementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary ‎condition‎

The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2008